ASTR 601 Problem Set 1: Due Thursday, September 18

1. (4 points total)

In order to get full credit for this problem you need to assess each of the possible solutions.
That is, you need to determine whether each of the solutions could be correct. If you find
something definitely wrong with a solution you can move on to the next possibility, but just
passing a single test is not enough.

A turbulent fluid emits sound waves. If the turbulent velocity is v, the sound speed in
the fluid is ¢, and the length over which turbulent fluctuation velocities is correlated is [,
what is the energy per time €, emitted as sound by unit mass of the turbulent fluid?

A) €5 0c &/ (v30)
B) €, o< c2vl
C) e, xx v¥/(c2l)
D) €, ox v3/1

2. (4 points total) A nonrotating neutron star has a circumferential radius R measured
locally (“circumferential” means that you measure the circumference at the equator, and
then divide by 27). The star also has a gravitational mass M (“gravitational mass” means
the mass that you would measure using, e.g., Kepler’s laws at a large distance from the
neutron star). The gravitational redshift z of a photon of any energy from the star is given
by 1+ 2 = 1/4/1 — 2GM/(Rc?), where G is Newton’s gravitational constant and c is the
speed of light in a vacuum. The star has uniform blackbody radiation from its surface,
emitted isotropically and with temperature T, as measured locally on the surface. You,
the observer, are at a distance d from the neutron star; d is finite but is so much larger than

R that you are effectively in flat spacetime with no gravitational redshift due to the star.
Given this setup, and using your understanding of specific intensity:

(a) (1 point) Derive the blackbody temperature that you measure from the star.

(b) (3 points) Derive the angular radius that you measure for the star.

3. (4 points total) Dr. I. M. N. Sane, an independent physicist, has realized that random
walks almost never apply in astronomy and are therefore useless. He gives as an example that
very high-energy photons have a much higher probability of forward scattering (scattering
in their direction of motion) than backward scattering (scattering opposite to their direction
of motion). He has submitted a manuscript to this effect to Nature magazine. Urmila
Chadayammuri, astronomy editor at Nature, has contacted you to ask for your opinion.



In particular, Dr. Sane considers a case in which a photon will scatter uniformly any-
where between 0 radians and Af < 1 radians from its original direction. The direction of the
deviation is uniform: if the photon was originally traveling in the z direction (6 = 0), then
after the scattering, 6 has an equal probability of being anywhere between 0 and A#, and ¢
(the azimuthal angle) has an equal probability of being anywhere from 0 to 27. After that
scattering, the next scattering is as described, but relative to the direction into which the
photon scattered in the previous step. For example, if the original direction was 8 = 0,¢ = 0
and it scattered into a direction § = 0.01, ¢ = 7/2, then we would effectively define a new z
axis in the direction (0.01,7/2) for the next scattering.

Given this, demonstrate that this setup can be treated as a random walk in angle. In
particular:

(a) (2 points) Determine the number of steps needed for the photon to go backward relative
to its original direction. That is, how many steps does it take, on average, so that the photon
is traveling at an angle § > 7/2 if it started at # = 0 and takes random steps as described
above? You only need to determine the dependence of the number of steps on Af, rather
than the numerical factor.

(b) (2 points) Suppose that the mean free path for each step is £. Given your result from
part (a), show that with enough scatterings the progress of the photon can be described as a
roughly isotropic random walk with a mean free path L > (: effectively, the photon scatters
until it randomizes its direction, with a net displacement of L from its original position, then
it does so again and again. As part of your demonstration, write L as a function of ¢ and
Af (again, the numerical factor is not needed).

4. (4 points total) A strange astronomical source has a photon number flux, measured at its
surface, of dN/(dE dAdt) = Ce P¥, where E and dE are both in units of keV, 3 is a pure
number greater than 0, and C has units of photons cm™? s~'. The number flux has this
form from E = 0 keV to F = oo keV. Thus, at the surface of the source, the number flux of
photons you would measure between E keV and E + dE keV is Ce™?F photons cm™2 s7.
Derive the effective temperature T.g for this source as measured at its surface. Express T.g

in Kelvin.



