
Light and the Properties of Electromagnetic Radiation

In this supplement, after reviewing what the book gives you about light, we add some details.

In particular, we take a close look at blackbody radiation. One of the main points we want to get

across is how to look at a complicated equation and derive physical insight using limits. Therefore,

we will go into significant detail as we look at limits of the blackbody formula.

1. The Properties of Light

These supplements are meant to, well, supplement the textbook rather than replacing it.

Therefore I will assume that you have read the textbook and that among other things you under-

stand that:

1. Light and matter can interact in various ways, including emission (matter produces light),

absorption (matter absorbs light), transmission (light passes through matter), and reflection

(light bounces off of matter).

2. Light can be considered as a particle or as a wave; which point of view is more convenient

depends on the circumstances.

3. In the particle framework, the particles of light are called photons. Photons have energy,

linear momentum, angular momentum, frequency, wavelength, and polarization.

4. In a vacuum, all wavelengths of light travel at the same speed: the speed of light, c =

2.99792458×108 m s−1 (this is actually exact, because a meter is defined as the distance light

travels in a vacuum in 1/(2.99792458× 108) seconds!).

5. The wavelength λ, the frequency f , and the energy E of a photon are related by f = c/λ and

E = hf , where h = 6.62607015× 10−34 m2 kg s−1 is Planck’s constant.

6. Atoms can interact with matter in various precise ways. For example, when an electron in

an atom drops from a higher energy state into a lower energy state, this produces a photon

with a very well-defined energy. Different atoms have different well-defined energies associated

with them, and this allows astronomers to identify atoms and their properties, including their

temperature and how they are moving with respect to us.

In addition, we note that light:

1. Has linear momentum. A photon of energy E has momentum p = E/c. The linear momentum

of light means that photons can bounce off of things and deliver force!
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2. Has angular momentum. The magnitude of the angular momentum of a photon, regardless

of its energy, is L = h/(2π); note that h/(2π) is usually given the special symbol ~.

3. Has a universal speed (c) in vacuum, but not in matter. For example, light travels more

slowly through glass or air than in vacuum (perhaps not surprising; light is an electromagnetic

wave, and if the wave has to wiggle matter it can’t travel as fast as when it’s moving through

vacuum), and in a medium (such as glass or air), it is usual that different frequencies travel

at different speeds. This is what causes refraction. In astronomy, this effect causes lower-

frequency radio waves to travel more slowly through the interstellar medium than higher-

frequency radio waves. That effect, called dispersion, spreads out radio signals by wavelength,

and can be used to make crude estimates of distances to sources.

2. Why light?

Most of our information about the universe comes from light, which is made up of individual

photons. There are other messengers from deep space: neutrinos, gravitational waves, and high-

energy charged particles (i.e., cosmic rays). Let’s compare the properties of photons with those

other messengers.

• Photons interact with things, but not too strongly. Neutrinos and gravitational waves sail

through the universe with almost no interactions. That means that matter in the way es-

sentially doesn’t block them, and that in principle their directions and energies can tell us a

lot about their sources. However, their very weak interactions also mean that for the most

part they go through detectors with minimal interactions. That means that only a very

small fraction of the energy in neutrinos and gravitational waves can be detected, and thus

only exceptionally energetic events can be detected via these channels. Massive, electrically

charged particles have the opposite problem. Electrons, protons, and nuclei can be acceler-

ated to high energies, but they are curved by the magnetic field of our Milky Way galaxy

(and the magnetic field between galaxies, if the source originates farther away), and slam into

air molecules (or go all the way through detectors), so some information is lost. Again, it is

typically only highly energetic sources that can be seen in highly energetic charged particles.

• All kinds of objects can emit photons. Heat is all that is needed, but many other processes

produce photons as well (this is fundamentally because the electromagnetic interaction is

pervasive and relatively strong). In contrast, significant production of gravitational waves

requires fast motion of large masses, and production of high energy particles needs large

electrical potentials or other acceleration mechanisms. Neutrinos are actually produced pretty

commonly (hydrogen fusing into helium generates them), but not enough to compensate for

their extremely weak interactions.

• Detectors can measure with precision many aspects of photons. These include energy, direc-
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tion, time of arrival, and polarization. In principle these quantities can also be measured for

the other messengers, but in practice such measurements are at much worse precision than is

usually available for photons.

3. Blackbody Radiation

Suppose we have matter that is completely in equilibrium with itself and with the radiation

around it. That means that all processes, and their inverses, are in balance, at least statisti-

cally. What we mean by that is that in the matter as a whole, every emission is balanced by a

corresponding absorption somewhere else; there is no net emission or absorption from the overall

matter.

We should understand that this is an approximation. For example, almost all photons from the

photosphere of the Sun come to us without interacting further; for those photons, their emission is

not balanced by a corresponding absorption.

But there are circumstances in which the assumption of equilibrium is very close to true. For

example, in the interior of the Sun, photons that are emitted can’t go very far before they are

absorbed, and therefore it is a good approximation to say that in the Sun’s interior the matter and

the radiation are in equilibrium, which among other things means that locally the radiation and

the matter have the same temperature T . This T changes with location in the Sun (T is much

larger in the center of the Sun than it is halfway to the photosphere), but locally the matter and

radiation are very close to equilibrium.

When the radiation is in equilibrium in this way, then the spectrum of the radiation is uniquely

determined, and is blackbody radiation. Because this spectrum occurs in a variety of astrophysical

contexts (one of the most remarkable being the cosmic microwave background!) it is therefore

useful to study the blackbody spectrum in some detail.

The amount of energy emitted per time per area per frequency for a blackbody at a temperature

T , at a frequency ν, is given by the function

B(ν, T ) =
8πhν3

c2
1

ehν/kBT − 1
, (1)

where kB = 1.38064852 × 10−23 J K−1 is Boltzmann’s constant. Thus when you multiply kB
by a temperature, you get an energy; because hν is also an energy, this means that hν/kBT is

dimensionless. It has to be, because the argument of an exponential or a trigonometric function

such as a sine, cosine, or tangent has to be dimensionless (do you understand why?).

When we see an equation such as this, the full form may not give us much insight. It is

therefore very helpful to look at limits.

What limits might we look at? Remember, we are thinking about the emission at some
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frequency ν for a temperature T . We could ask about what happens when hν � kBT (i.e., at low

frequency for that temperature), and what happens when hν � kBT (i.e., at high frequency for

that temperature). We’ll do the low-frequency limit first.

We will focus our attention on the denominator, and in particular on ehν/kBT . So that we don’t

clutter things up too much, let’s define x ≡ hν/kBT . Therefore, hν � kBT means that x� 1. So

what is ex when x� 1? Something you learn in calculus is that when x� 1, ex ≈ 1 + x. But here

is a case where you can try it yourself. Using a calculator, what is e0.1? How about e0.01 or e0.001?

You should find that the smaller x is, the better ex is approximated by 1 + x.

Thus if

ex ≈ 1 + x , (2)

then

ehν/kBT − 1 ≈ 1 + hν/kBT − 1 = hν/kBT . (3)

Substituting this back in to our original equation, we find that when hν � kBT ,

B(ν, T ) ≈ 8πhν3

c2
/(hν/kBT ) = 8πν2kBT/c

2 . (4)

What do we make of this limit? One thing to note is that in this limit, the spectrum scales with

frequency as ν2. This limit, in fact, was derived well before the full form was known, and it poses

a problem: if the spectrum were just proportional to ν2 for all frequencies ν, then as ν → ∞ the

emission would become infinite! That obviously doesn’t make sense. Because ultraviolet light has

a higher frequency than visible light, and because the divergence of the spectrum happens at high

frequencies, this was called the ultraviolet catastrophe when it was the only spectrum derived for

blackbody light. Incidentally, “The Ultraviolet Catastrophe” would be an awesome name for a

band...

We’ll get to the high frequency limit in a bit, but there is one other point to make that is not

immediately evident. You can see that in the low-frequency limit, the final approximate expression

does not involve Planck’s constant h. This is meaningful because it turns out that the presence

of h in a formula indicates that quantum mechanics is important. Thus what this formula tells us

is that for low frequencies compared with the temperature, quantum mechanics is not important;

indeed, the expression was derived before quantum mechanics existed.

Now let’s turn our attention to the high-frequency limit, in which x ≡ hν/kBT � 1. If x� 1,

then ex is much larger than x; for example, if x = 10, then ex ≈ 2.2 × 104. Thus in this limit,

ex − 1 ≈ ex, and

B(ν, T ) ≈ 8πhν3

c2
e−hν/kBT . (5)

Now we see that h does appear in the formula; quantum mechanics is important. But does this

formula resolve the ultraviolet catastrophe?

We’ll go through this step by step to show how it’s done. Remember that the ultraviolet

catastrophe was that at high frequencies, the spectrum would diverge to infinity if the spectrum
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really were proportional to ν2 for any ν. We can manipulate the equation to determine whether

that is true for the full equation, in the limit that we have above.

We’ll begin by noting that we are interested in varying ν for a fixed temperature T . That

is, we are thinking about a blackbody of fixed temperature; for that blackbody, what happens at

really high frequencies? Let’s again use x ≡ hν/kBT ; that means that our expression becomes

B(ν, T ) ≈ 8πhν3

c2
e−x . (6)

But x ≡ hν/kBT means that ν = kBTx/h, so substituting that in gives

B(x, T ) ≈
8πk3BT

3x3

h2c2
e−x =

8πk3BT
3

h2c2
x3e−x . (7)

Remembering that we are considering a constant temperature T , this expression is therefore a

constant times x3e−x. As a result, we only need to determine whether as x becomes larger and

larger, x3e−x becomes larger and larger, or whether it eventually decreases.

It happens that for sufficiently large x, e−x decreases more rapidly with increasing x than any

polynomial increases. But rather than just taking that as given we can get some insight by putting

numbers into a calculator. If x = 10, then x3e−x = 0.045. If x = 20, then x3e−x = 1.6 × 10−5.

If x = 30, then x3e−x = 2.5 × 10−9. Indeed, when x becomes large, x3e−x tends to zero and not

infinity, like the low-frequency formula would have suggested! This is how Planck’s formula saved

the universe, which otherwise would have been vaporized at high frequencies :).

There are a few other points about blackbodies that are useful to keep in mind:

• At low frequencies, as we found, increasing the frequency ν of the radiation increases B(ν, T ).

At high frequencies, increasing the frequency of the radiation decreases B(ν, T ). Thus with

increasing frequency a blackbody’s emission rises smoothly, reaches a peak, and then decreases

smoothly.

• The peak frequency of a blackbody (i.e., the frequency ν that maximizes B(ν, T ) at a given

T ) is proportional to T .

• For a fixed emitting area, a higher-temperature blackbody emits more at all frequencies than

a lower-temperature blackbody. Thus even at the peak of the lower-temperature blackbody

(which is at a lower frequency than the peak of the higher-temperature blackbody), the higher-

temperature blackbody emits more. You can find some images on the Web that demonstrate

this beautifully.

• The total flux (energy per area per time) over all frequencies of a blackbody of temperature T

is F = σSBT
4, where σSB = 5.67037×10−8 J s−1 m−2 K−4 is the Stefan-Boltzmann constant.

Thus a higher-temperature blackbody emits a lot more than a lower-temperature blackbody.

For example, if you double the temperature, the flux goes up by a factor of 24 = 16!
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• This means that if you have an object with an area A and a temperature T , the blackbody

luminosity (energy per time) is L = AσSBT
4.

And, as always, feel free to talk with the tutors, the TAs, or me about the topics in this

supplement!
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Practice problems

1. Calculate the frequency and energy of a photon of wavelength 5×10−7 m, which is in the middle

of the visible band.

Answer: f = c/λ, so when λ = 5×10−7 m, putting in c ≈ 2.998×108 m s−1 gives f = 5.996×
1014 Hz. The energy is then E = hf , so using h ≈ 6.626×10−34 m2 kg s−1 gives E = 3.973×10−19 J.

2. Calculate the frequency and energy of a photon of wavelength 10−10 m, which is in the X-ray

band.

3. Calculate the linear momentum of the visible photon and the X-ray photon from the previous

two problems.

4. Calculate kBT for your body temperature, T ≈ 310 K.

Answer: kB ≈ 1.38× 10−23 J K−1, so kBT ≈ 4.26× 10−21 J.

5. What is the wavelength of a photon of that energy?

Answer: E = hf = hc/λ, so λ = hc/E. Putting in h = 6.626 × 10−34 m2 kg s−1, c =

2.998× 108 m s−1, and E = 4.26× 10−21 J gives λ = 4.66× 10−5 m.

6. Do the same calculations as in the last two problems for T = 5, 800 K (about the value for the

photosphere of the Sun).

7. Do the same calculations for T = 107 K (attainable by a neutron star).

8. The average photospheric temperature of the Sun is about T = 5, 800 K. Compare the total

blackbody flux at that temperature with the total blackbody flux from a sunspot at T = 4, 000 K

(the temperature can go down to T = 3, 000 K in a sunspot). Why do sunspots appear dark?

9. Can you prove that the peak frequency of a blackbody is proportional to its temperature T?

Hint: you can save yourself a lot of effort by looking carefully at the blackbody expression before

trying to do any actual calculations. For example, does the factor 2h/c3 affect the location of the

peak?

10. When we say that the peak frequency of a blackbody is proportional to T , we mean that

hνpeak = CkBT , where C is some numerical constant. Can you determine C to within, say, 1%?

Hint: yes, you could solve this with calculus. But can you think of an efficient way to solve the

problem using a calculator and educated guessing?


