Light and the Properties of Electromagnetic Radiation

In this supplement, after reviewing what the book gives you about light, we add some details.
In particular, we take a close look at blackbody radiation. One of the main points we want to get
across is how to look at a complicated equation and derive physical insight using limits. Therefore,
we will go into significant detail as we look at limits of the blackbody formula.

1. The Properties of Light

These supplements are meant to, well, supplement the textbook rather than replacing it.
Therefore I will assume that you have read the textbook and that among other things you under-
stand that:

1. Light and matter can interact in various ways, including emission (matter produces light),
absorption (matter absorbs light), transmission (light passes through matter), and reflection
(light bounces off of matter).

2. Light can be considered as a particle or as a wave; which point of view is more convenient
depends on the circumstances.

3. In the particle framework, the particles of light are called photons. Photons have energy,
linear momentum, angular momentum, frequency, wavelength, and polarization.

4. In a vacuum, all wavelengths of light travel at the same speed: the speed of light, ¢ =
2.99792458 x 10® m s~! (this is actually exact, because a meter is defined as the distance light
travels in a vacuum in 1/(2.99792458 x 10®) seconds!).

5. The wavelength A, the frequency f, and the energy E of a photon are related by f = ¢/\ and
E = hf, where h = 6.62607015 x 10~3* m? kg s~ ! is Planck’s constant.

6. Atoms can interact with matter in various precise ways. For example, when an electron in
an atom drops from a higher energy state into a lower energy state, this produces a photon
with a very well-defined energy. Different atoms have different well-defined energies associated
with them, and this allows astronomers to identify atoms and their properties, including their
temperature and how they are moving with respect to us.

In addition, we note that light:

1. Has linear momentum. A photon of energy F has momentum p = E/c. The linear momentum
of light means that photons can bounce off of things and deliver force!
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2. Has angular momentum. The magnitude of the angular momentum of a photon, regardless
of its energy, is L = h/(2); note that h/(27) is usually given the special symbol h.

3. Has a universal speed (c¢) in vacuum, but not in matter. For example, light travels more
slowly through glass or air than in vacuum (perhaps not surprising; light is an electromagnetic
wave, and if the wave has to wiggle matter it can’t travel as fast as when it’s moving through
vacuum), and in a medium (such as glass or air), it is usual that different frequencies travel
at different speeds. This is what causes refraction. In astronomy, this effect causes lower-
frequency radio waves to travel more slowly through the interstellar medium than higher-
frequency radio waves. That effect, called dispersion, spreads out radio signals by wavelength,
and can be used to make crude estimates of distances to sources.

2. Why light?

Most of our information about the universe comes from light, which is made up of individual
photons. There are other messengers from deep space: neutrinos, gravitational waves, and high-
energy charged particles (i.e., cosmic rays). Let’s compare the properties of photons with those
other messengers.

e Photons interact with things, but not too strongly. Neutrinos and gravitational waves sail
through the universe with almost no interactions. That means that matter in the way es-
sentially doesn’t block them, and that in principle their directions and energies can tell us a
lot about their sources. However, their very weak interactions also mean that for the most
part they go through detectors with minimal interactions. That means that only a very
small fraction of the energy in neutrinos and gravitational waves can be detected, and thus
only exceptionally energetic events can be detected via these channels. Massive, electrically
charged particles have the opposite problem. Electrons, protons, and nuclei can be acceler-
ated to high energies, but they are curved by the magnetic field of our Milky Way galaxy
(and the magnetic field between galaxies, if the source originates farther away), and slam into
air molecules (or go all the way through detectors), so some information is lost. Again, it is
typically only highly energetic sources that can be seen in highly energetic charged particles.

e All kinds of objects can emit photons. Heat is all that is needed, but many other processes
produce photons as well (this is fundamentally because the electromagnetic interaction is
pervasive and relatively strong). In contrast, significant production of gravitational waves
requires fast motion of large masses, and production of high energy particles needs large
electrical potentials or other acceleration mechanisms. Neutrinos are actually produced pretty
commonly (hydrogen fusing into helium generates them), but not enough to compensate for
their extremely weak interactions.

e Detectors can measure with precision many aspects of photons. These include energy, direc-
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tion, time of arrival, and polarization. In principle these quantities can also be measured for
the other messengers, but in practice such measurements are at much worse precision than is
usually available for photons.

3. Blackbody Radiation

Suppose we have matter that is completely in equilibrium with itself and with the radiation
around it. That means that all processes, and their inverses, are in balance, at least statisti-
cally. What we mean by that is that in the matter as a whole, every emission is balanced by a
corresponding absorption somewhere else; there is no net emission or absorption from the overall
matter.

We should understand that this is an approzimation. For example, almost all photons from the
photosphere of the Sun come to us without interacting further; for those photons, their emission is
not balanced by a corresponding absorption.

But there are circumstances in which the assumption of equilibrium is very close to true. For
example, in the interior of the Sun, photons that are emitted can’t go very far before they are
absorbed, and therefore it is a good approximation to say that in the Sun’s interior the matter and
the radiation are in equilibrium, which among other things means that locally the radiation and
the matter have the same temperature 7. This T' changes with location in the Sun (7" is much
larger in the center of the Sun than it is halfway to the photosphere), but locally the matter and
radiation are very close to equilibrium.

When the radiation is in equilibrium in this way, then the spectrum of the radiation is uniquely
determined, and is blackbody radiation. Because this spectrum occurs in a variety of astrophysical
contexts (one of the most remarkable being the cosmic microwave background!) it is therefore
useful to study the blackbody spectrum in some detail.

The amount of energy emitted per time per area per frequency for a blackbody at a temperature
T, at a frequency v, is given by the function

8mhu? 1
2 ohw/keT _1° (1)

B(v,T) =

where kp = 1.38064852 x 10723 J K~ ! is Boltzmann’s constant. Thus when you multiply kg
by a temperature, you get an energy; because hv is also an energy, this means that hv/kpT is
dimensionless. It has to be, because the argument of an exponential or a trigonometric function
such as a sine, cosine, or tangent has to be dimensionless (do you understand why?).

When we see an equation such as this, the full form may not give us much insight. It is
therefore very helpful to look at limits.

What limits might we look at? Remember, we are thinking about the emission at some
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frequency v for a temperature 7. We could ask about what happens when hv < kgT (i.e., at low
frequency for that temperature), and what happens when hv > kgT (i.e., at high frequency for
that temperature). We’ll do the low-frequency limit first.

We will focus our attention on the denominator, and in particular on e"*/¥5T So that we don’t
clutter things up too much, let’s define x = hv/kpT. Therefore, hv < kpT means that z < 1. So
what is e when & < 17 Something you learn in calculus is that when x < 1, e* &~ 1+ z. But here
is a case where you can try it yourself. Using a calculator, what is €%'? How about ¢’°! or e0-001?
You should find that the smaller z is, the better e* is approximated by 1 + z.

Thus if
e*~1+x, (2)
then
e/kET _ 1 ~ 1+ hw/kgT — 1 = hu/kpT . (3)
Substituting this back in to our original equation, we find that when hrv < kT,
B(v,T) ~ 8”0};”3 /(hv/kpT) = 8t2kpT/c? . (4)

What do we make of this limit? One thing to note is that in this limit, the spectrum scales with
frequency as v2. This limit, in fact, was derived well before the full form was known, and it poses
a problem: if the spectrum were just proportional to v? for all frequencies v, then as v — oo the
emission would become infinite! That obviously doesn’t make sense. Because ultraviolet light has
a higher frequency than visible light, and because the divergence of the spectrum happens at high
frequencies, this was called the ultraviolet catastrophe when it was the only spectrum derived for
blackbody light. Incidentally, “The Ultraviolet Catastrophe” would be an awesome name for a
band...

We'll get to the high frequency limit in a bit, but there is one other point to make that is not
immediately evident. You can see that in the low-frequency limit, the final approximate expression
does not involve Planck’s constant h. This is meaningful because it turns out that the presence
of h in a formula indicates that quantum mechanics is important. Thus what this formula tells us
is that for low frequencies compared with the temperature, quantum mechanics is not important;
indeed, the expression was derived before quantum mechanics existed.

Now let’s turn our attention to the high-frequency limit, in which z = hv/kpT > 1. If x > 1,
then e® is much larger than z; for example, if x = 10, then e® ~ 2.2 x 10*. Thus in this limit,
e’ — 1=~ e* and

3
B(v,T) =~ %e_h”/kBT . (5)
c

Now we see that h does appear in the formula; quantum mechanics is important. But does this
formula resolve the ultraviolet catastrophe?

We’ll go through this step by step to show how it’s done. Remember that the ultraviolet
catastrophe was that at high frequencies, the spectrum would diverge to infinity if the spectrum
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really were proportional to v? for any v. We can manipulate the equation to determine whether
that is true for the full equation, in the limit that we have above.

WEe’ll begin by noting that we are interested in varying v for a fixed temperature 7. That
is, we are thinking about a blackbody of fized temperature; for that blackbody, what happens at
really high frequencies? Let’s again use x = hv/kpT; that means that our expression becomes

8why?

B(v,T) ~ =

e ", (6)

But = hv/kpT means that v = kgT'z/h, so substituting that in gives

8rkypT3x3 . 8mkRT3 4
B(m,T)mWe zzwxe v (7)
Remembering that we are considering a constant temperature 7', this expression is therefore a

3, —x

constant times z°e~*. As a result, we only need to determine whether as x becomes larger and

3

larger, z3e~% becomes larger and larger, or whether it eventually decreases.

It happens that for sufficiently large x, e~ decreases more rapidly with increasing x than any
polynomial increases. But rather than just taking that as given we can get some insight by putting
numbers into a calculator. If z = 10, then z3e™® = 0.045. If z = 20, then 2% = 1.6 x 107°.
If z = 30, then z3¢™® = 2.5 x 1077, Indeed, when z becomes large, 3¢ tends to zero and not
infinity, like the low-frequency formula would have suggested! This is how Planck’s formula saved
the universe, which otherwise would have been vaporized at high frequencies :).

There are a few other points about blackbodies that are useful to keep in mind:

e At low frequencies, as we found, increasing the frequency v of the radiation increases B(v,T).
At high frequencies, increasing the frequency of the radiation decreases B(v,T). Thus with
increasing frequency a blackbody’s emission rises smoothly, reaches a peak, and then decreases
smoothly.

e The peak frequency of a blackbody (i.e., the frequency v that maximizes B(v,T) at a given
T') is proportional to 7.

e For a fixed emitting area, a higher-temperature blackbody emits more at all frequencies than
a lower-temperature blackbody. Thus even at the peak of the lower-temperature blackbody
(which is at a lower frequency than the peak of the higher-temperature blackbody), the higher-
temperature blackbody emits more. You can find some images on the Web that demonstrate
this beautifully.

e The total flux (energy per area per time) over all frequencies of a blackbody of temperature 7'
is F = ogpgT*, where ogg = 5.67037x 1078 J s7! m—2 K~* is the Stefan-Boltzmann constant.
Thus a higher-temperature blackbody emits a lot more than a lower-temperature blackbody.
For example, if you double the temperature, the flux goes up by a factor of 2* = 16!
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e This means that if you have an object with an area A and a temperature T, the blackbody
luminosity (energy per time) is L = AogpT™.

And, as always, feel free to talk with the tutors, the TAs, or me about the topics in this
supplement!



Practice problems

1. Calculate the frequency and energy of a photon of wavelength 5 x 10~ m, which is in the middle
of the visible band.

Answer: f = c/)\, so when A = 5x 1077 m, putting in ¢ ~ 2.998 x 10% m s~! gives f = 5.996 x
10 Hz. The energy is then E = hf, so using h ~ 6.626x 10734 m? kg s ! gives £ = 3.973x 10~ J.

2. Calculate the frequency and energy of a photon of wavelength 107! m, which is in the X-ray
band.

3. Calculate the linear momentum of the visible photon and the X-ray photon from the previous
two problems.

4. Calculate kT for your body temperature, T' ~ 310 K.
Answer: kg ~1.38 x 10723 J K1, so kgT ~ 4.26 x 1072 J.
5. What is the wavelength of a photon of that energy?

Answer: E = hf = hc/)\, so A = he/E. Putting in h = 6.626 x 1073* m? kg s7!, ¢ =
2.998 x 103 m s™!, and £ = 4.26 x 10721 J gives A = 4.66 x 10~° m.

6. Do the same calculations as in the last two problems for 7' = 5,800 K (about the value for the
photosphere of the Sun).

7. Do the same calculations for T = 107 K (attainable by a neutron star).

8. The average photospheric temperature of the Sun is about 7" = 5,800 K. Compare the total
blackbody flux at that temperature with the total blackbody flux from a sunspot at 7" = 4,000 K
(the temperature can go down to 7' = 3,000 K in a sunspot). Why do sunspots appear dark?

9. Can you prove that the peak frequency of a blackbody is proportional to its temperature 71'7
Hint: you can save yourself a lot of effort by looking carefully at the blackbody expression before
trying to do any actual calculations. For example, does the factor 2h/c® affect the location of the
peak?

10. When we say that the peak frequency of a blackbody is proportional to T, we mean that
hvpeax = CkpT, where C' is some numerical constant. Can you determine C' to within, say, 1%?
Hint: yes, you could solve this with calculus. But can you think of an efficient way to solve the
problem using a calculator and educated guessing?



