
Gravity and Its Consequences

Newton’s law of universal gravitation has played a profound role in science and even in philos-

ophy: the demonstration that such a simple law can explain both planetary orbits and the fall of an

apple onto a physicist’s head helped provide a sense of unity to the universe. In this supplement we

will explore some of the consequences of the physics of gravity. There are a fair number of details

in this supplement, and my hope is that as you follow them you will get an idea of how to perform

such analyses. Here’s the quick summary:

• When two point masses are in orbit around each other, the orbit is mathematically equivalent

to the orbit of a single object around a fixed object at the center of mass. This means that

we can analyze binary stars, where there is no single dominant mass, in the same way that

we can analyze a planet around a star.

• There are many situations in astrophysics where we want to consider a slight change to a

system. For example, we might ask what happens to the gravitational force if the distance

is changed by a small amount. In such cases, it is extremely helpful to make use of calculus

concepts.

In this supplement we will go into details about these main points, and will in particular give

several examples of how to deal with small changes using calculus.

1. The law of gravity, the center of mass, and the reduction of the two-body

problem to the one-body problem

Newton’s law says that if two objects of masses m1 and m2 are at locations ~r1 and ~r2, then

object 2 attracts object 1 with a force

~F21 = −Gm1m2

r2
r̂ (1)

where ~r ≡ ~r1 − ~r2, r = |~r|, and r̂ ≡ ~r/r. In what ways does this satisfy the constraints on forces

that we discussed two classes ago? The force on 2 due to 1 is equal and opposite to that on 1

due to 2, and the force is directed along the line between the two objects. Note also that the

force only depends on ~r1 − ~r2, and not the two positions separately, as is intuitively

reasonable. Newton’s gravitational constant G ≈ 6.67 × 10−11 m3 kg−1 s−2 has units that are

notoriously difficult to remember. The easiest way is to remember a formula involving G (such as

the force formula above!), and work it out from the known units of force, mass, and distance.

The usual approach (which we’re adopting in our course as well) is to begin by thinking about

a situation in which one of the masses (say, m1) is much greater than the other. The Sun-Earth
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system is a good example; the Earth has mass, but the Sun’s mass is about 3× 105 times greater.

Thus it’s a pretty good approximation to say that the Sun is nailed in place while the Earth orbits

around it. Using this approximation, it is possible to show that Kepler’s laws of planetary motion

follow from the inverse-square law of gravity. That’s a great triumph.

But many orbiting systems do not have huge differences in masses between their components.

For example, the nearest star system to our own has three stars (Alpha Centauri A, Alpha Centauri

B, and Proxima Centauri). Alpha Centauri A and B form a binary with an orbital period of 80

years (Proxima is much farther away). Alpha Centauri A has a mass 1.1 times the mass of our

Sun; Alpha Centauri B has a mass 0.9 times the mass of our Sun. Clearly, in that system, we can’t

assume that one star is fixed while the other orbits!

At first sight, this might appear to be a huge problem. What seems simple for a planet orbiting

a star could in principle become hugely complicated for two stars orbiting each other.

But luckily, in Newtonian gravity, we can show that the problem of the orbit of two point

masses around each other reduces to the problem of one body around the unmoving center of mass!

That makes things a lot easier.

Let’s first convince ourselves that the center of mass is the right point. You’ve probably all

played on a seesaw, and you know that if you are sitting across from a 500 pound gorilla then the

gorilla will need to sit much closer to the fulcrum than you do, for there to be a balance between

the two of you. In fact, if you and your gorilla friend want a perfect balance, then you need to

adjust so that the fulcrum is at the balance point.

Put in more abstract terms, let objects of masses m1 and m2 be, respectively, at the locations

~r1 and ~r2. Then the center of mass is at

~r ≡ m1~r1 +m2~r2
m1 +m2

. (2)

Of course, the system might be moving with respect to us. Whether it is or not, the total momentum

of the system is ~ptot = m1~̇r1 + m2~̇r2 = (m1 + m2)~̇r = Mtot~̇r, where Mtot ≡ m1 + m2 is the total

mass of the system. Therefore, the center of mass is also the center of momentum.

We will now show that we can turn a two-body problem (in which we think about the forces

on each object separately) into a one-body problem (in which we imagine a single body orbiting the

center of mass). We’ll start by defining the position of each object with respect to the center of mass

as ~R1 ≡ ~r1−~r and ~R2 ≡ ~r2−~r, and the relative positions of the two masses as ~R ≡ ~R1− ~R2 = ~r1−~r2.
The ~F = m~a equations of motion are then

m1~̈r1 = −Gm1m2
R3

~R

m2~̈r2 = Gm1m2
R3

~R
(3)

(remember that one dot means a single time derivative, and two dots means two time derivatives;

also remember that ~R/R = R̂, so these equations are the same as Equation 1). Adding these
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together we get
m1~̈r1 +m2~̈r2 = 0

(m1 +m2)~̈r = 0

(m1 +m2)~̇r = constant .

(4)

In the last line we use the constancy of the masses; you can take the derivatives of both sides to

get the previous line. What does this mean? It means that the total momentum ~ptot = (m1 +m2)~̇r

is constant, which it had better be! It is useful to do these types of checks on occasion during a

derivation.

Now let’s multiply the first of our equations of motion by m2, the second by m1, and subtract:

m1m2(~̈r1 − ~̈r2) = −Gm1m2(m1 +m2)

R3
~R . (5)

We recognize that because ~R = ~R1 − ~R2 = ~r1 − ~r2, the expression in parentheses on the left hand

side is just ~̈R, so after cancelling the product m1m2 on both sides we have finally

~̈R = −G(m1 +m2)

R3
~R . (6)

This equation means that the two-body problem reduces exactly to the one-body problem, except

that the mass is now the total mass and the vector ~R that is changing doesn’t represent the actual

position of a body, but rather the separation vector of the two bodies. Wow! This is pretty cool,

because it means that we can now transfer all the insight we gained in one-body orbits to two-body

orbits.

Note that the relative motion of the objects is independent of the initial coordinate system we

used (the one in which the positions of the bodies are ~r1 and ~r2). This has to be the case; it’s an

example of a symmetry. If it were otherwise, then, for example, the orbits of planets in the Solar

System would depend on which alien happened to be observing us at a given time!

What if we want the motion of each individual body? First, we solve the equivalent one-body

problem for ~R. We then use
m1~r1 +m2~r2 = (m1 +m2)~r

~r1 − ~r2 = ~R .
(7)

How can we solve for ~r1 and ~r2 independently? A good way to start would be to multiply the

second equation by m2 to get

m2~r1 −m2~r2 = m2
~R . (8)

When we add this to the first equation, the m2~r2 terms cancel out, and we therefore get

(m1 +m2)~r1 = (m1 +m2)~r +m2
~R , (9)

and so on. The final result is

~r1 = ~r +m2/(m1 +m2)~R = ~r + µ
m1

~R

~r2 = ~r −m1/(m1 +m2)~R = ~r − µ
m2

~R
(10)
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where we have defined the reduced mass µ ≡ m1m2/(m1 + m2). If you look at the motions of the

two bodies in detail, you find that each of them moves in an ellipse with one focus being at the

center of mass of the system.

2. Some consequences for orbits

Because of this reduction from a two-body system to a one-body system, we can revisit some

aspects of orbits, in particular their energy and angular momentum.

Suppose that we have two objects, of masses m1 and m2, which orbit around each other in an

ellipse with semimajor axis a and eccentricity e. Here, we are to think about the relative separation

between the objects, which ranges from a(1 − e) at the closest to a(1 + e) at the farthest. Again

define Mtot ≡ m1 + m2 to be the total mass, and µ ≡ m1m2/(m1 + m2) to be the reduced mass.

Then the total orbital energy is

Eorb = −GMtotµ

2a
(11)

and the total orbital angular momentum is

Lorb = µ
√
GMtota(1− e2) . (12)

Note that these expressions are, correctly, unchanged if we decide that we will rename m1 to m2,

and vice versa: since neither Mtot nor µ change in that case, and a and e are independent of what

we’re calling the masses, then the energy and angular momentum don’t change; how could they!

We see as before that the energy does not depend on the eccentricity, just the semimajor axis.

The angular momentum, however, does depend on the eccentricity, as it must: e → 1 is the limit

toward a purely radial orbit, which has zero angular momentum at fixed a, and the expression

indicates that correctly.

Finally, we note that in the limit where one object has a much smaller mass than the other

(say, m2 � m1), the expressions go back to what we’re used to for (say) a planet around the star.

In the m2 � m1 limit, Mtot ≈ m1 and µ ≈ m2 (work it out), and then the energy and angular

momentum reduce to what we had previously.

3. Gravitational potential energy, and using calculus to approximate

Let’s now temporarily retreat back to the case in which we have a low-mass object orbiting

around a much more massive object. We know that the total energy of the system has to be

conserved if the system is isolated. We already know the formula for the kinetic energy: for

something of mass m and speed v, the kinetic energy is Ekin = 1
2mv

2.

But in addition, there is gravitational potential energy in the system. If at a given moment

masses m1 and m2 are separated by a distance r, then the gravitational potential energy between
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the two masses is

Epot = −Gm1m2

r
. (13)

A question that might strike us is: why is the energy negative? We can answer this with two points:

1. The energy scale is by convention set so that two bodies at infinite distance from each other

have zero gravitational potential energy. I say “by convention” because it turns out that it is

energy differences that matter rather than the absolute scale of energies. It is just convenient

in many applications to set the gravitational potential to zero at infinite separation.

2. Using that scale, we can convince ourselves that closer bodies must have more negative

gravitational potential energy. Remember that gravitation is universally attractive. Thus if

we start with two objects at some finite distance from each other, to get them to infinite

distance we have to pull them apart. That takes positive energy (in the sense of physics, not

of woo-woo New Age nonsense!). Since you need to add energy to get to zero, the original

energy must have been negative.

You have probably seen gravitational potential energy in a different form. For example, you

might have seen gravitational potential energy in the form

Epot = mgh (14)

for an object of mass m a height h above the ground, when the gravitational acceleration is g. This

looks very different from our formula above, so what gives?

First, note that here we have an example of another scale of energy: the potential energy is 0

at the ground, rather than at an infinite distance. As we said above, that’s no problem, because it

is differences in energy rather than the absolute energy value that matter.

But the much different look of this formula from our previous one deserves some scrutiny.

Say that we are dealing with a mass m on the Earth, which has a mass M � m. If we are at a

distance r from the center of the Earth (which we’ll treat as spherical), then the magnitude of the

gravitational force is F = GMm/r2 (no vector symbols here, because we’re only thinking about

the magnitude). Thus F = ma tells us that the gravitational acceleration is g = F/m = GM/r2.

Our second formula for the gravitational potential energy then becomes

Epot =
GMm

r2
h . (15)

That’s still not the same, though. Let’s say that we use our first formula, Epot = −GMm/r, and

ask about the potential energy difference between a mass m at a distance r from the center of our

spherical object of mass M , and the same mass m at a distance r+ h from the center. Using ∆ to

represent the difference, we get

∆Epot = Epot(r + h)− Epot(r) = −GMm

r + h
−
(
−GMm

r

)
. (16)
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This still doesn’t seem to help us a lot. But let’s make one additional assumption: that h � r.

Then, it will turn out that we can use calculus.

The way we use calculus is to start from the definition of a derivative. If we have a function

f(x), then
df

dx
= lim

dx→0

f(x+ dx)− f(x)

dx
. (17)

This means that for a small but nonzero dx, we can multiply both sides by dx to get

f(x+ dx)− f(x) ≈ dx df
dx

. (18)

For our case, we can consider the derivative of the gravitational potential energy with r:

Epot(r + dr)− Epot(r) ≈ dr
dEpot

dr
. (19)

But the radius change we are considering is dr = h, so

Epot(r + h)− Epot(r) ≈ h
dEpot

dr
. (20)

Please remember that this is an approximation, which becomes closer and closer to true as h

becomes smaller and smaller than r. For something like the Earth, where maybe in a lab experiment

h = 1 meter and r > 6, 000 km, indeed h � r. Because Epot = −GMm/r, dEpot/dr = GMm/r2,

and therefore the difference in potential energy is

Epot(r + h)− Epot(r) ≈ hGMm/r2 = mgh . (21)

Ta da! The mgh formula is true in the limit of the more general formula, that the change in height

is much less than the original radius.

But the technique here is one that you should remember. If you have any function f(x), and

you are interested in the change in f (i.e., ∆f) from x to x+ ∆x, then in the limit that ∆x is very

small,

∆f ≈ ∆x
df

dx
. (22)

4. Tidal force

As one more important application of Newton’s law of gravity, and as another illustration of

our calculus approximation approach, we will consider tidal forces. These are indeed named after

ocean tides, which are caused by the gravity of the Moon and the Sun. But how exactly do they

work?

Some initial thinking should convince us that “gravity” by itself is not a sufficient explanation

for the tides. You know, for example, that astronauts in the International Space Station feel
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weightless; even though gravity is operating on them, they fall freely and thus don’t feel the “pull”

of gravity. Similarly, when you jump off of a diving board you don’t feel the pull of gravity when

you are in the air. The observation that if you are freely falling you don’t feel gravity, is

actually one statement of a profound physical principle called the equivalence principle.

We’ll get to this in much more detail in ASTR 121, when we talk about general relativity.

Thus something else must cause tides. A clue we can get is by looking again at Equation 1.

The acceleration of gravity of course depends on the distance from the source of gravity. But a

planet such as Earth is big; its near part is closer to the Moon than its center, and its center is

closer to the Moon than its far part. This suggests that the near part will be pulled more toward

the Moon than the center will be, and that the center will be pulled more toward the Moon than

the far part. This is what causes tides. There is an extra bulge on the near part of the Earth due

to this effect, and an extra bulge on the far part of the Earth; you can think of the near part of the

Earth being pulled away from the center of the Earth, and of the center of the Earth being pulled

away from the far part. That’s why we get two tides per day and not just one.

But how strong is the tidal effect? Let’s think about the Moon-Earth situation. Say that the

distance from the center of the Earth to the Moon is r, and that the radius of the Earth is R. Let

the mass of the Earth be ME , and of the Moon be MM . Then the magnitude of the force at a

distance r is

F (r) =
GMEMM

r2
, (23)

and the magnitude of the force at a distance r −R (i.e., the near side) is

F (r −R) =
GMEMM

(r −R)2
. (24)

We want the difference in the forces, F (r − R) − F (r). In general, this would be a complicated

problem. But the radius of the Earth is about 1/60 of the distance to the Moon, so R� r and we

can use our calculus trick:

F (r −R)− F (r) =
GMEMM

(r −R)2
− GMEMM

r2
≈ (−R)

dF

dr
= R

2GMEMM

r3
=

2RGMEMM

r3
. (25)

Note, by the way, that you get the same answer if you compare the tidal force between the center

of the Earth (at distance r) and the far side of the Earth (at distance r +R); try it!

We can now do a quick comparison of the ratio of the tidal force exerted on the Earth by the

Moon, to the tidal force exerted on the Earth by the Sun. The Sun is far more massive, but it is

also much farther away than the Moon. Which wins?

If we use rMoon to denote the distance to the Moon, rSun to denote the distance to the Sun,

and MS to denote the mass of the Sun, then the Moon-Earth tidal force is

Ftide,Moon =
2RGMEMM

r3Moon

, (26)
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where again R is the radius of the Earth, and the Sun-Earth tidal force is

Ftide,Sun =
2RGMEMS

r3Sun
. (27)

We want the ratio of these forces. An inefficient way to compute the ratio would be to plug in

all the numbers for Ftide,Moon, then plug in all the numbers for Ftide,Sun, then take the ratio. You

would be very likely to make a mistake somewhere. An efficient way to compute the ratio is to

cancel out common factors first. We see that 2RGME is a common factor, so we cancel that out.

Then we have
Ftide,Moon

Ftide,Earth
=
MM/r

3
Moon

Ms/r3Sun
=
MM

MS

(
rSun
rMoon

)3

. (28)

Now we plug in the numbers. MM/MS = 7.35 × 1022 kg/1.989 × 1030 kg = 3.70 × 10−8, and

rSun/rMoon = 1.496× 1011 m/3.844× 108 m = 389. Thus

Ftide,Moon

Ftide,Earth
= 3.70× 10−8 × (389)3 = 2.18 . (29)

Despite its much smaller mass, the closeness of the Moon means that it exerts about twice the tidal

force on Earth that the Sun does.

And, as always, feel free to talk with the tutors, the TAs, or me about the topics in this

supplement!
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Practice problems

1. On average the Earth is r = 1.496 × 1011 m from the Sun. The Earth’s mass is M⊕ =

5.972 × 1024 kg, and the Sun’s mass is M� = 1.989 × 1030 kg. In Newtons (standard SI unit),

what is the magnitude of the force of gravity between them? Recall that in SI units, G = 6.67 ×
10−11 m3 kg−1 s−2.

Answer: the magnitude of the force of gravity between two masses m1 and m2 separated by

a distance r is F = Gm1m2/r
2. Plugging in the numbers gives F = 3.54× 1022 Newtons.

2. Do the same calculation as above for Venus (MVenus = 4.871× 1024 kg, r = 1.082× 1011 m).

3. Two friends, one of mass 60 kg and one of mass 90 kg, shake hands. At that moment, their

centers of gravity are 0.5 m from each other. Treating them both as spherical (we’re astrophysicists,

after all!), calculate the force of gravity between them during their handshake. Compare that

with the weight of a typical bacterium (mass 10−15 kg) on the surface of the Earth (mass M⊕ =

5.972× 1024 kg, radius R⊕ = 6.378× 106 m).

4. Suppose you have a circular disk. Figure out the area of the part of the disk between a radius r

and a radius r + ∆r, where ∆r � r.

Answer: The area of a disk of radius r is πr2, and the area of a disk of radius r + ∆r is

π(r + ∆r)2. The difference is

dA = π(r + ∆r)2 − πr2

= π[r2 + 2r∆r + (∆r)2 − r2]
= π[2r∆r + (∆r)2]

≈ π(2r∆r) .

(30)

In the last step, we note that because ∆r � r, (∆r)2 � 2r∆r, so we drop the (∆r)2 term.

We can also do this with calculus:

A = πr2

dA/dr = 2πr

∆A = ∆r(dA/dr)

∆A = 2πr∆r ,

(31)

in the limit ∆r � r.

5. Suppose you have a sphere. Figure out the volume of the part of the sphere between a radius r

and a radius r + ∆r, where ∆r � r.

6. Remember that the kinetic energy of an object of mass m moving at speed v is Ekin = 1
2mv

2.

How much energy do you need to put in to the object to increase its speed to v + dv, if dv � v?

7. Some advocates for astrology, when pressed to come up with a physical mechanism by which

astronomical bodies can influence human beings, say “tidal forces”. A common argument along



– 10 –

those lines is that if the Moon can produce tides on the huge Earth, surely it can have a big effect

on us. Calculate that effect. Suppose we consider a 50 cm long newborn whose center is 2 meters

from a 70 kg doctor. Compare the tidal force from the doctor on the baby, with the tidal force

of the Moon on the baby. Which is greater? Also, figure out the ratio of the true tidal force of

the doctor on the baby, to the tidal force we get using our calculus-based approximation. What

fractional error do we make by using the approximation?


