Gravity and Its Consequences

Newton’s law of universal gravitation has played a profound role in science and even in philos-
ophy: the demonstration that such a simple law can explain both planetary orbits and the fall of an
apple onto a physicist’s head helped provide a sense of unity to the universe. In this supplement we
will explore some of the consequences of the physics of gravity. There are a fair number of details
in this supplement, and my hope is that as you follow them you will get an idea of how to perform
such analyses. Here’s the quick summary:

e When two point masses are in orbit around each other, the orbit is mathematically equivalent
to the orbit of a single object around a fixed object at the center of mass. This means that
we can analyze binary stars, where there is no single dominant mass, in the same way that
we can analyze a planet around a star.

e There are many situations in astrophysics where we want to consider a slight change to a
system. For example, we might ask what happens to the gravitational force if the distance
is changed by a small amount. In such cases, it is extremely helpful to make use of calculus
concepts.

In this supplement we will go into details about these main points, and will in particular give
several examples of how to deal with small changes using calculus.

1. The law of gravity, the center of mass, and the reduction of the two-body
problem to the one-body problem

Newton’s law says that if two objects of masses m1 and mgy are at locations 7 and 7, then
object 2 attracts object 1 with a force

(1)

where 7 = 7} — 72, r = |F], and 7 = 7/r. In what ways does this satisfy the constraints on forces
that we discussed two classes ago? The force on 2 due to 1 is equal and opposite to that on 1
due to 2, and the force is directed along the line between the two objects. Note also that the
force only depends on 7} — 75, and not the two positions separately, as is intuitively

1§72 has units that are

reasonable. Newton’s gravitational constant G ~ 6.67 x 107! m? kg~
notoriously difficult to remember. The easiest way is to remember a formula involving G (such as

the force formula above!), and work it out from the known units of force, mass, and distance.

The usual approach (which we’re adopting in our course as well) is to begin by thinking about
a situation in which one of the masses (say, mq) is much greater than the other. The Sun-Earth
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system is a good example; the Earth has mass, but the Sun’s mass is about 3 x 10° times greater.
Thus it’s a pretty good approximation to say that the Sun is nailed in place while the Earth orbits
around it. Using this approximation, it is possible to show that Kepler’s laws of planetary motion
follow from the inverse-square law of gravity. That’s a great triumph.

But many orbiting systems do not have huge differences in masses between their components.
For example, the nearest star system to our own has three stars (Alpha Centauri A, Alpha Centauri
B, and Proxima Centauri). Alpha Centauri A and B form a binary with an orbital period of 80
years (Proxima is much farther away). Alpha Centauri A has a mass 1.1 times the mass of our
Sun; Alpha Centauri B has a mass 0.9 times the mass of our Sun. Clearly, in that system, we can’t
assume that one star is fixed while the other orbits!

At first sight, this might appear to be a huge problem. What seems simple for a planet orbiting
a star could in principle become hugely complicated for two stars orbiting each other.

But luckily, in Newtonian gravity, we can show that the problem of the orbit of two point
masses around each other reduces to the problem of one body around the unmoving center of mass!
That makes things a lot easier.

Let’s first convince ourselves that the center of mass is the right point. You’ve probably all
played on a seesaw, and you know that if you are sitting across from a 500 pound gorilla then the
gorilla will need to sit much closer to the fulcrum than you do, for there to be a balance between
the two of you. In fact, if you and your gorilla friend want a perfect balance, then you need to
adjust so that the fulcrum is at the balance point.

Put in more abstract terms, let objects of masses m1 and mo be, respectively, at the locations
71 and 7. Then the center of mass is at
miT + Mo
my+my

T—‘

(2)

Of course, the system mlght be movmg with respect to us. Whether it is or not, the total momentum
of the system is pioy = m171 + maia = (Mg + mg)r = Mo, where Mot = mq + mo is the total
mass of the system. Therefore, the center of mass is also the center of momentum.

We will now show that we can turn a two-body problem (in which we think about the forces
on each object separately) into a one-body problem (in which we imagine a single body orbiting the
center of mass). We’ll start by defining the position of each object with respect to the center of mass
as ﬁl =7 —7 and ég = 15—, and the relative positions of the two masses as R= él —ﬁg = 71 —To.
The F = ma equations of motion are then

= G =
miry = _7m13m2R (3)
mory = SR

(remember that one dot means a single time derivative, and two dots means two time derivatives;
also remember that ]:f/ R = R, so these equations are the same as Equation 1). Adding these



together we get
mir +mary =0

(m1 + mg)F =0 (4)

(mq + mg)f’ = constant .
In the last line we use the constancy of the masses; you can take the derivatives of both sides to
get the previous line. What does this mean? It means that the total momentum pioy = (M +m2)7%’
is constant, which it had better be! It is useful to do these types of checks on occasion during a
derivation.

Now let’s multiply the first of our equations of motion by me, the second by mq, and subtract:

Gmima(mq +ms3) =
B 1 2;31 Q)R. 5)

myma () — ) =

We recognizg that because R = ﬁl — ng = 7 — Ty, the expression in parentheses on the left hand
side is just ﬁ, so after cancelling the product mims on both sides we have finally

= G(m1 + mz) -

R = _TR . (6)
This equation means that the two-body problem reduces ezxactly to the one-body problem, except
that the mass is now the total mass and the vector R that is changing doesn’t represent the actual
position of a body, but rather the separation vector of the two bodies. Wow! This is pretty cool,
because it means that we can now transfer all the insight we gained in one-body orbits to two-body
orbits.

Note that the relative motion of the objects is independent of the initial coordinate system we
used (the one in which the positions of the bodies are i and 7). This has to be the case; it’s an
example of a symmetry. If it were otherwise, then, for example, the orbits of planets in the Solar
System would depend on which alien happened to be observing us at a given time!

What if we want the motion of each individual body? First, we solve the equivalent one-body
problem for R. We then use

miT + mary = (M1 + ma)T (7)
1—Ts =R.

How can we solve for 7} and 75 independently? A good way to start would be to multiply the
second equation by ms to get
m27_"1 - mQ'FQ = mgé . (8)

When we add this to the first equation, the mos terms cancel out, and we therefore get
(m1 4 ma)7 = (m1 + ma)7 + maR 9)

and so on. The final result is



— 4 —

where we have defined the reduced mass 1 = mimsa/(mi + me). If you look at the motions of the
two bodies in detail, you find that each of them moves in an ellipse with one focus being at the
center of mass of the system.

2. Some consequences for orbits

Because of this reduction from a two-body system to a one-body system, we can revisit some
aspects of orbits, in particular their energy and angular momentum.

Suppose that we have two objects, of masses my and ms, which orbit around each other in an
ellipse with semimajor axis a and eccentricity e. Here, we are to think about the relative separation
between the objects, which ranges from a(1 — e) at the closest to a(l + ¢€) at the farthest. Again
define Mo, = my + ma to be the total mass, and u = mimsa/(my + msg) to be the reduced mass.

Then the total orbital energy is
GMtot/L

Eory = —
orb 2

(11)

and the total orbital angular momentum is
Lot = pn/GMioa(l — €2) . (12)

Note that these expressions are, correctly, unchanged if we decide that we will rename my to my,

and vice versa: since neither My nor p change in that case, and a and e are independent of what
we're calling the masses, then the energy and angular momentum don’t change; how could they!

We see as before that the energy does not depend on the eccentricity, just the semimajor axis.
The angular momentum, however, does depend on the eccentricity, as it must: e — 1 is the limit
toward a purely radial orbit, which has zero angular momentum at fixed a, and the expression
indicates that correctly.

Finally, we note that in the limit where one object has a much smaller mass than the other
(say, mo < my), the expressions go back to what we’re used to for (say) a planet around the star.
In the my < my limit, Mo, =~ my and p ~ mgy (work it out), and then the energy and angular
momentum reduce to what we had previously.

3. Gravitational potential energy, and using calculus to approximate

Let’s now temporarily retreat back to the case in which we have a low-mass object orbiting
around a much more massive object. We know that the total energy of the system has to be
conserved if the system is isolated. We already know the formula for the kinetic energy: for
2

lmv .

something of mass m and speed v, the kinetic energy is Eyi, = 35

But in addition, there is gravitational potential energy in the system. If at a given moment
masses m1 and my are separated by a distance r, then the gravitational potential energy between



the two masses is a
1Mo
Epot = —————2 . (13)

,
A question that might strike us is: why is the energy negative? We can answer this with two points:

1. The energy scale is by convention set so that two bodies at infinite distance from each other
have zero gravitational potential energy. I say “by convention” because it turns out that it is
energy differences that matter rather than the absolute scale of energies. It is just convenient
in many applications to set the gravitational potential to zero at infinite separation.

2. Using that scale, we can convince ourselves that closer bodies must have more negative
gravitational potential energy. Remember that gravitation is universally attractive. Thus if
we start with two objects at some finite distance from each other, to get them to infinite
distance we have to pull them apart. That takes positive energy (in the sense of physics, not
of woo-woo New Age nonsense!). Since you need to add energy to get to zero, the original
energy must have been negative.

You have probably seen gravitational potential energy in a different form. For example, you
might have seen gravitational potential energy in the form

Epot = mgh (14)

for an object of mass m a height h above the ground, when the gravitational acceleration is g. This
looks very different from our formula above, so what gives?

First, note that here we have an example of another scale of energy: the potential energy is 0
at the ground, rather than at an infinite distance. As we said above, that’s no problem, because it
is differences in energy rather than the absolute energy value that matter.

But the much different look of this formula from our previous one deserves some scrutiny.
Say that we are dealing with a mass m on the Earth, which has a mass M > m. If we are at a
distance r from the center of the Earth (which we’ll treat as spherical), then the magnitude of the
gravitational force is F' = GMm/r? (no vector symbols here, because we're only thinking about
the magnitude). Thus F = ma tells us that the gravitational acceleration is g = F/m = GM /r>.
Our second formula for the gravitational potential energy then becomes

GMm
)

Epot = h. (15)

That’s still not the same, though. Let’s say that we use our first formula, E,ox = —GMm/r, and
ask about the potential energy difference between a mass m at a distance r from the center of our
spherical object of mass M, and the same mass m at a distance r + h from the center. Using A to
represent the difference, we get

GMm GMm
AEpot = Epot(r + h) — Epot(r) = — . h — (— , ) . (16)
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This still doesn’t seem to help us a lot. But let’s make one additional assumption: that h < r.
Then, it will turn out that we can use calculus.

The way we use calculus is to start from the definition of a derivative. If we have a function
f(x), then

o _ o et~ f@)

e 17
dxr  dz—0 dx (17)
This means that for a small but nonzero dx, we can multiply both sides by dx to get
d
flz+dx) — f(x) = dx—f . (18)
dx
For our case, we can consider the derivative of the gravitational potential energy with 7:
dE
B (1 + dr) = By (r) & dr=2% (19)
But the radius change we are considering is dr = h, so
dE
Eppor(r + ) = Epr(r) = h=—2% . (20)

Please remember that this is an approximation, which becomes closer and closer to true as h
becomes smaller and smaller than r. For something like the Earth, where maybe in a lab experiment
h =1 meter and r > 6,000 km, indeed h < r. Because Epo = —GMm/r, dEpo/dr = GMm/r?,
and therefore the difference in potential energy is

Epot (1 + h) — Epot(r) = hGMm/r* = mgh . (21)

Ta da! The mgh formula is true in the limit of the more general formula, that the change in height
is much less than the original radius.

But the technique here is one that you should remember. If you have any function f(z), and
you are interested in the change in f (i.e., Af) from x to x + Az, then in the limit that Az is very
small,

daf

Af ~Axo (22)

4. Tidal force

As one more important application of Newton’s law of gravity, and as another illustration of
our calculus approximation approach, we will consider tidal forces. These are indeed named after
ocean tides, which are caused by the gravity of the Moon and the Sun. But how exactly do they
work?

Some initial thinking should convince us that “gravity” by itself is not a sufficient explanation
for the tides. You know, for example, that astronauts in the International Space Station feel
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weightless; even though gravity is operating on them, they fall freely and thus don’t feel the “pull”
of gravity. Similarly, when you jump off of a diving board you don’t feel the pull of gravity when
you are in the air. The observation that if you are freely falling you don’t feel gravity, is
actually one statement of a profound physical principle called the equivalence principle.
We’ll get to this in much more detail in ASTR 121, when we talk about general relativity.

Thus something else must cause tides. A clue we can get is by looking again at Equation 1.
The acceleration of gravity of course depends on the distance from the source of gravity. But a
planet such as Earth is big; its near part is closer to the Moon than its center, and its center is
closer to the Moon than its far part. This suggests that the near part will be pulled more toward
the Moon than the center will be, and that the center will be pulled more toward the Moon than
the far part. This is what causes tides. There is an extra bulge on the near part of the Earth due
to this effect, and an extra bulge on the far part of the Earth; you can think of the near part of the
Farth being pulled away from the center of the Earth, and of the center of the Earth being pulled
away from the far part. That’s why we get two tides per day and not just one.

But how strong is the tidal effect? Let’s think about the Moon-Earth situation. Say that the
distance from the center of the Earth to the Moon is r, and that the radius of the Earth is R. Let
the mass of the Earth be Mg, and of the Moon be Mj;;. Then the magnitude of the force at a
distance r is

GMpMy;
F(r) = SHEEM (23)
and the magnitude of the force at a distance r — R (i.e., the near side) is

_ GMgMy;

Fr—R) = 0 (24)

We want the difference in the forces, F(r — R) — F(r). In general, this would be a complicated
problem. But the radius of the Earth is about 1/60 of the distance to the Moon, so R < r and we
can use our calculus trick:

_ GMpMy  GMpMy

dF 2GMgMyr  2RGMgpM)y
F(r—R)—F(r)= r—R)? 3 =

— =R = . 25
dr 73 rd (25)

~ (-R)

Note, by the way, that you get the same answer if you compare the tidal force between the center
of the Earth (at distance r) and the far side of the Earth (at distance r + R); try it!

We can now do a quick comparison of the ratio of the tidal force exerted on the Earth by the
Moon, to the tidal force exerted on the Earth by the Sun. The Sun is far more massive, but it is
also much farther away than the Moon. Which wins?

If we use ryoon to denote the distance to the Moon, rg,, to denote the distance to the Sun,
and Mg to denote the mass of the Sun, then the Moon-Earth tidal force is

2RG Mg My
Ftide,Moon = 3 > (26)
"Moon
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where again R is the radius of the Earth, and the Sun-Earth tidal force is

2RGMgMg

3
TSun

Fiide,Sun = (27)
We want the ratio of these forces. An inefficient way to compute the ratio would be to plug in
all the numbers for Fiige Moon, then plug in all the numbers for Fiiqe sun, then take the ratio. You
would be very likely to make a mistake somewhere. An efficient way to compute the ratio is to
cancel out common factors first. We see that 2RG Mg is a common factor, so we cancel that out.
Then we have

Ftide,Earth MS/Tgun MS

Now we plug in the numbers. My;/Ms = 7.35 x 10%2 kg/1.989 x 103 kg = 3.70 x 1078, and
TSun/TMoon = 1.496 x 1011 m/3.844 x 108 m = 389. Thus

Ftide,Moon MM/Tl%/[oon _ My < "Sun )3 (28)

T"Moon

Ftide,Moon

=3.70 x 1078 x (389) = 2.18.. (29)
Fiige, Earth

Despite its much smaller mass, the closeness of the Moon means that it exerts about twice the tidal
force on Earth that the Sun does.

And, as always, feel free to talk with the tutors, the TAs, or me about the topics in this
supplement!



Practice problems

1. On average the Earth is 7 = 1.496 x 10! m from the Sun. The Earth’s mass is Mg =
5.972 x 10?4 kg, and the Sun’s mass is Mgy = 1.989 x 103 kg. In Newtons (standard SI unit),
what is the magnitude of the force of gravity between them? Recall that in SI units, G = 6.67 x
1071 m? kg™t s72.

Answer: the magnitude of the force of gravity between two masses m; and my separated by
a distance r is F' = Gmyma/r?. Plugging in the numbers gives F' = 3.54 x 10?2 Newtons.

2. Do the same calculation as above for Venus (Myepus = 4.871 x 10?4 kg, r» = 1.082 x 10! m).

3. Two friends, one of mass 60 kg and one of mass 90 kg, shake hands. At that moment, their
centers of gravity are 0.5 m from each other. Treating them both as spherical (we’re astrophysicists,
after alll), calculate the force of gravity between them during their handshake. Compare that
with the weight of a typical bacterium (mass 107! kg) on the surface of the Earth (mass Mg =
5.972 x 10** kg, radius Rg = 6.378 x 10° m).

4. Suppose you have a circular disk. Figure out the area of the part of the disk between a radius r
and a radius r + Ar, where Ar < r.

Answer: The area of a disk of radius r is 72, and the area of a disk of radius r + Ar is
7(r + Ar)2. The difference is

dA =n(r+ Ar)? —ar?

= 7[r? 4 2rAr 4+ (Ar)? — r?] (30)

= m[2rAr + (Ar)?]

~ m(2rAr) .

In the last step, we note that because Ar < r, (Ar)? < 2rAr, so we drop the (Ar)? term.
We can also do this with calculus:
A =mr?

dA/dr =2nr (31)
AA = Ar(dA/dr)
AA =2nrrAr,

in the limit Ar < r.

5. Suppose you have a sphere. Figure out the volume of the part of the sphere between a radius r
and a radius r + Ar, where Ar < r.

6. Remember that the kinetic energy of an object of mass m moving at speed v is Fy = %va.

How much energy do you need to put in to the object to increase its speed to v + dv, if dv <K v?

7. Some advocates for astrology, when pressed to come up with a physical mechanism by which
astronomical bodies can influence human beings, say “tidal forces”. A common argument along
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those lines is that if the Moon can produce tides on the huge Earth, surely it can have a big effect
on us. Calculate that effect. Suppose we consider a 50 cm long newborn whose center is 2 meters
from a 70 kg doctor. Compare the tidal force from the doctor on the baby, with the tidal force
of the Moon on the baby. Which is greater? Also, figure out the ratio of the true tidal force of

the doctor on the baby, to the tidal force we get using our calculus-based approximation. What
fractional error do we make by using the approximation?



