
Conservation Laws

Suppose that two spaceships collide. The aftermath has twisted wreckage, fuel leaks, and other

awful things. But is there something about the after that is the same as the before?

The answer is yes. Conserved quantities (ones that do not change after some interaction) are

at the heart of much of the intuition we have about physics, and about many related astronomy

topics. In this supplement we will discuss some conservation laws that follow from Newton’s laws

of motion, and that are indeed even more general.

But first we should address an issue that can cause confusion. When we talk about conserved

quantities such as energy, linear momentum, and angular momentum, we have in mind isolated

systems. That is, we imagine that we have a system that is completely isolated from any contact

with anything else, and we include everything about that isolated system, before and after the

interaction. Thus, for example, if we are thinking about a star as part of our system, we would

track every photon emitted by that star and include it in our calculations. If we don’t do that, then

the remaining parts of the system can change their energy, linear momentum, angular momentum,

or other quantities.

This could lead to some reasonable objections. No system in the universe is isolated in this

sense. For example, we receive radiation from the microwave background, so clearly we get energy

from afar; we also radiate energy, stuff hits the Earth that can bring linear or angular momentum,

and so on. Thus the assumption of an isolated system sounds absurdly unrealistic. Why should we

travel in such a theoretical dreamland?

The answer is that many systems are almost isolated. For example, consider a binary

consisting of two ordinary stars. Yes, that system will radiate energy, angular momentum, and

so on, but the time needed to radiate a significant fraction of the system’s angular momentum or

energy is extremely large compared with a binary orbital period. Thus over a binary period, energy

and angular momentum are almost conserved.

On a more fundamental level, we are talking about basic physical laws, and we get improved

insight about them when we think about idealized situations. You know, for example, that a rock

and a piece of paper don’t fall in the same way on Earth, but if you eliminated air resistance,

they would. In the same way, we can show that if you included absolutely everything: every atom,

photon, neutrino, etc., then there are quantities that remain constant. That’s the spirit in which

we will investigate conserved quantities. And again, lots of systems are basically isolated, so even

locally and without including the whole universe, these laws are often obeyed to high precision.

With that in mind, let’s proceed!



– 2 –

1. Conservation of Linear Momentum

Linear momentum, often just called “momentum”, is ~p = m~v for slowly-moving systems. It is

obvious that the linear momentum of a single, non-isolated object can change. For example, the

Earth orbits the Sun; thus six months from now, it will be moving in the opposite direction from

how it is moving now. But what if we think about the linear momentum of the Earth plus the Sun?

We will start by imagining an isolated two-body system. We only have two particles in the

system, A and B. The force of A on B is ~FAB, and the force of B on A is ~FBA. There are no other

forces exerted on either A or B. We’d like to examine the rate of change of the total momentum in

such a system. Why? Because, as we indicated in the last supplement, if we find that the rate of

change of the momentum is zero, then the momentum must be constant because it isn’t changing.

From Newton’s second law, the rate of change of the momentum ~pA of particle A is

d~pA
dt

= ~FBA , (1)

and similarly the rate of change of the momentum ~pB of particle B is

d~pB
dt

= ~FAB . (2)

The momentum of the full system (which contains just A and B) is ~ptot = ~pA + ~pB. Its rate of

change is
d~ptot
dt

=
d(~pA + ~pB)

dt
=

d~pA
dt

+
d~pB
dt

= ~FBA + ~FAB . (3)

But Newton’s third law says that ~FBA = −~FAB, which means that ~FBA + ~FAB = 0. Therefore,

d~ptot
dt

= 0 . (4)

The total momentum of the system is constant, i.e., the total momentum of the system is conserved.

That sounds promising, but it might initially seem that all we’ve done is show that momentum

is conserved if we have exactly two particles. But it’s much more general than that. Suppose, for

example, that we have some potentially large number of particles A, B, C, D, . . .. The argument

above tells us that particle A’s contribution to the change in momentum of particle B is exactly

cancelled by particle B’s contribution to the change in momentum of particle A. This cancellation

works for every pair of particles: AC cancels CA, BD cancels DB, and so on. Thus momentum is

conserved for the entire system!

Note again that we do have to include the entire system for this to be true. For example, as

we mentioned before, if we look just at the Earth we notice that its momentum clearly changes

over its orbit. But if the Earth and Sun formed an isolated system then the total momentum of

the Earth-Sun system would be conserved.



– 3 –

2. Conservation of Angular Momentum

For our investigation of the conservation of angular momentum ~L = ~r × ~p, we will again start

with a two-particle system. We will also add one more fact: that the force between two particles

acts along the line between them (anything else would violate symmetry; think about it!). Thus,

for example, if particle A is at vector location ~rA in some coordinate system, and particle B is at

vector location ~rB, then the force between them has a direction that is parallel or antiparallel to

~rB − ~rA. The force can go inversely with distance (as in gravity), or have some other dependence,

and could be attractive (as with gravity) or repulsive (as with two electrons, due to the electrostatic

force), depending on the nature of the force.

With this in mind, how does the angular momentum evolve for an isolated two-particle system?

The time rate of change of the total angular momentum ~Ltot ≡ ~LA + ~LB is

d~Ltot/dt = ~rA × ~FBA + ~rB × ~FAB

= −~rA × ~FAB + ~rB × ~FAB

= (~rB − ~rA)× ~FAB

∝ (~rB − ~rA)× (~rB − ~rA)

= 0 .

(5)

In the last line we used the property of cross products that the cross product between any two

parallel, or antiparallel, vectors is zero.

Therefore, for an isolated two-particle system, the angular momentum is conserved. What

happens for an isolated system with more than two particles? As with linear momentum, the

angular momentum is still constant, as can be seen from pairwise cancellation. Thus, for any

isolated system, the linear momentum and angular momentum are constant. Another way of putting

this is that for any system, isolated or otherwise, the total linear and angular momentum are

changed only by external forces and torques, respectively:

d~ptot/dt = ~Fext, d~Ltot/dt = ~Next . (6)

3. Conservation of Energy

We now move on to a third conservation principle: the conservation of energy. Unlike linear

and angular momentum, energy is tricky to define rigorously. One try might be “Energy is a

quantity which may be converted into motion”. If all you have to worry about is energy of motion,

it’s straightforward: E = 1
2mv2 for nonrelativistic motion. However, there are many other forms

of energy: potential energy, electrostatic energy, thermal energy, chemical energy, nuclear energy,

energy in photons or neutrinos or gravitational waves, and so on. Not all of those forms are distinct

at a fundamental level, but it doesn’t matter. In a general case, it can be difficult to track where all

the energy goes, but the principle of energy conservation is that for an isolated system (as always),

the total energy in all forms is constant, although the amount of energy in each form can change.



– 4 –

Richard Feynman used a nice analogy for this, which I’ll paraphrase closely. Suppose a child

receives a toy for Christmas: 28 indestructible blocks. He plays with them in his room. He’s rather

messy, so his father comes in to clean up every once in a while. After a while, the father notices

an amazing thing: day after day, there are always 28 blocks in the room! One day, there are only

27 visible; however, a search reveals that one of the blocks is under the rug, so the total is still 28.

Another day there are only 26. Careful examination shows that the window is open, and indeed the

two missing blocks are outside. Another day there are 30 blocks! Yikes! But it turns out that the

child had a friend visiting, and the friend brought two blocks with them, so that’s okay. The next

day brought a puzzle; only 25 blocks are visible, and the father has searched everywhere but the toy

box, which is closed. The child throws a tantrum and refuses to allow the box to be opened. Being

clever, however, the father weighs the toy box and discovers that it has excess weight exactly equal

to three blocks. On yet another day, only 20 blocks can be seen. After all the other possibilities

have been eliminated, the father notes that the bath water is higher than it was when the water was

poured in. The bath water is dirty, so the father can’t directly check if the blocks are in there, but

using Archimedes’ principle he finds that just the right amount of water is displaced for 8 blocks.

As time goes on, in fact, he discovers that there are always 28 blocks, although creativity may be

required to discover where they are. Just as with the blocks, the total energy in a system is always

conserved, but sometimes it takes some creativity to determine where it has gone.

For additional research: if you are interested in conservation laws, you might want to

look up Noether’s Theorem. This is a beautiful theorem in mathematical physics proven by the

great Emmy Noether in 1915. It shows that symmetries of a particular type are inevitably linked

to conserved quantities. In our case, it turns out that time symmetry (doing a local experiment

now in an isolated laboratory gives the same result as doing it earlier or later) gives us energy

conservation, and similarly location symmetry (doing an isolated experiment here or there) leads

to linear momentum conservation, and angular symmetry (orienting an isolated laboratory to this

angle or that) implies angular momentum conservation.

And, as always, feel free to talk with us about the topics in this supplement!
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Practice problems

1. A ball of mass m = 2 kg is 1 m above a table on Earth, which has a gravitational acceleration

g ≈ 9.8 m s−2. If it is dropped from there, with zero initial speed, and if we ignore air resistance

and other complicating effects, how fast will it be moving when it hits the table?

Answer: The gravitational potential energy relative to the table is Epot = mgh. Here h is

the height relative to the table, so h = 0 when the ball hits the table. The kinetic energy of motion

is Ekin = 1
2mv2, where v is the speed. When the ball hits the table, h = 0 and thus Epot = 0. The

sum of the energies, Epot + Ekin, is always constant, and when the ball hits the table this means

Ekin = 1
2mv2 = mgh

v =
√

2gh

=
√

2× (9.8 m s−2)× (1 m)

≈ 4.4 m s−1 .

(7)

Note that the mass of the ball cancels out.

2. Suppose that the ball in the previous problem is released from 1 m, but when it is released it is

pushed so that at 1 m above the table it is already moving downward at 1 m s−1. How fast does

it hit the table in this case?

3. A 100 kg person runs at 10 m s−1 head-on into a person with a mass of 150 kg. How fast

does the second person have to be running in the opposite direction so that they have the same

magnitude of momentum, i.e., that their total momentum is zero?

4. A block of mass 4 kg slides at 1 m s−1 along a surface. We will ignore both friction and air

resistance, and will assume that the surface is flat. The block then hits an initially stationary block

of mass 1 kg. The motion is all in a straight line; the collision is not glancing, no rotation occurs,

etc. Also, the masses of the blocks are unchanged during the whole process. From conservation

of energy and linear momentum, determine the speed of each block after the collision. We assume

that the energy is only in the form of the kinetic energy of the blocks: the blocks don’t vibrate, or

heat up, or anything like that.

Answer: I’m going to go through this solution in considerable detail because, in my opinion,

it displays a lot of characteristics of an astrophysical calculation. I hope it helps!

Back to the problem: because all of the motion is in a straight line, we will use the scalar

versions of the formula, e.g., linear momentum is really ~p = m~v, but we’ll write it as p = mv.

Using “1” to refer to the first block and “2” to refer to the second block, the initial total linear

momentum is p = p1 + p2 = m1,iv1,i + m2,iv2,i = (4 kg)(1 m s−1) + (1 kg)(0 m s−1) = 4 kg m s−1.

Here the subscript “i” means “initial”. The final linear momentum, after the interaction, has to be

the same as the initial linear momentum, so it also must be that m1,fv1,f + m2,fv2,f = 4 kg m s−1

(where “f” means “final”). But we can save ourselves some time, and be more general, if we keep
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the expressions symbolic. We can also remove the “i” and “f” from the masses, because we assume

that the masses stay constant.

With all that in mind, we find that

m1v1,f + m2v2,f = m1v1,i . (8)

Dividing through by m1 gives us

v1,f + (m2/m1)v2,f = v1,i . (9)

So far we don’t have enough information to find the solution. But we are also told that the total

energy is the same after as before the collision. That is,

1
2m1v

2
1,f + 1

2m2v
2
2,f = 1

2m1v
2
1,i

v21,f + (m2/m1)v
2
2,f = v21,i .

(10)

We can square equation (9), which gives us

v21,f + 2(m2/m1)v1,fv2,f + (m2/m1)
2v22,f = v21,i . (11)

Setting the two expressions for v21,i equal to each other gives

v21,f + 2(m2/m1)v1,fv2,f + (m2/m1)
2v22,f = v21,f + (m2/m1)v

2
2,f . (12)

We cancel the v21,f on both sides and move a term over to get

2(m2/m1)v1,fv2,f + [(m2/m1)
2 − (m2/m1)]v

2
2,f = 0 . (13)

We always want to look at our expressions to see what they imply, and to determine whether that

makes sense. We see, for example, that v2,f = 0 solves this equation. What does that mean? We

know that v2,i (the initial speed of block 2) is zero. Thus, yes, it does make sense that v2,f = 0 is

a solution, because it would effectively be the same as the initial conditions, which of course have

the same linear momentum and energy as the initial conditions!

We also see that the expression only depends on the ratio of the masses, rather than both

masses separately. Does that make sense?

If we now assume that v2,f is not zero, we can cancel it (and the common factor m2/m1) in

Equation 13 to get

2v1,f + [(m2/m1)− 1]v2,f = 0 , (14)

or after some more manipulation,

v1,f =
m1 −m2

2m1
v2,f . (15)

Here, again, we should stop to think. This says that, given that initially the second block isn’t

moving, the proportionality between the final speed of the first block and the final speed of the
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section block does not depend on the initial speed of the first block. Does that make sense? Also,

we see that when m1 = m2, v1,f = 0. Does that make sense?

Now we substitute this back into our linear momentum conservation equation, which was

m1v1,f + m2v2,f = m1v1,i . (16)

We know that m1v1,f = 1
2(m1 −m2)v2,f , so our linear momentum conservation equation becomes

1
2(m1 −m2)v2,f + m2v2,f = m1v1,i

1
2(m1 + m2)v2,f = m1v1,i

v2,f = 2m1
m1+m2

v1,i .

(17)

This also implies that

v1,f =
m1 −m2

2m1
v2,f =

m1 −m2

m1 + m2
v1,i . (18)

Finally, plugging in m1 = 4 kg, m2 = 1 kg, and v1,i = 1 m s−1 gives v1,f = (3/5) m s−1 and

v2,f = (8/5) m s−1.

So what do we learn from all this? This is a good example of an astrophysical problem. We take

a simplified problem, determine what physics is important, set out the equations in an organized

way, and solve them. It is extremely important to check your expressions along the way.

By “check your expressions” we do not mean “stare carefully at your derivation” :). We mean what

we did here: we ask “does this make sense?” at a number of parts of the derivation. Please do this

in your own work. Remember the carrot and stick: if you get a wrong answer but correctly say

why (e.g., via a check such as this) and roughly what the right answer is, you will get substantial

partial credit. If you get a clearly wrong answer (wrong units, or symmetries, or limits) and do not

say anything, you will have extra points taken off. You have to commit, though: saying “I think

this might be wrong” gets you no credit. The reason I feel so strongly about this is that this type

of checking (“does it make sense?”) is critical to astrophysics.

5. Now we’ll go through some limits of this expression, to determine whether our answer makes

sense. First, suppose that m1 � m2. In that limit, calculate v1,f and v2,f relative to v1,i. Verify

explicitly that these conserve energy and angular momentum. Do the answers make physical sense?

6. Now the opposite limit: m1 � m2. Do the answers make physical sense?

7. Explicitly work through the conservation of linear momentum and angular momentum for three

particles. That is, write the time rate of change of the total linear momentum, and total angular

momentum, for a three-particle system, and show that the rate of change is zero.


